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Abstract. Monocular 3D reconstruction is an important problem. We
solve the problem of reconstructing a 3D ball or shuttle position from
a single-view television video. The contextual constraint is vital in this
paper, which is implemented by a confirming point. The confirming point
represents all the contextual cues, such as human pose, stroke technique,
and shadow on the ground. The confirming point also tells us where the
3D point is. The confirming point decision is made by a human operator.
Thus, the proposed method is a mixture of computer vision and human
intelligence. Moreover, we propose a new air-ball friction model. This
model provides a more accurate result because the aerodynamic drag
force cannot be ignored in ball game.
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1 Introduction

Monocular 3D reconstruction is an important problem and has received much
interest both in the computer vision community and in the ”computer science
in sport” community. We consider the problem of estimating 3D ball or shuttle
position from a single-view television video. Compared with multi-view methods,
there are many advantages to use single-view (or monocular) method, including
lower equipment cost, lower complexity, and higher portability of camera set-up.
Moreover, most of the publicly available sport videos are single view, especially
the data of competitors. Finally, the television sport video provides more realistic
and more important information than the data from laboratory.

Monocular 3D reconstruction is a challenging area with many unsolved prob-
lems. In 2015, Shen et al. solved the model-drifting problem using a mixture of
physical model and geometric model [8]. The hidden assumption of this solution
is that the ball must hit the ground plane and the 3D position of ball bounce is
known. However, this assumption is not valid in volleyball game or badminton
game because the ball/shuttle is not allowed to bounce. We solve this problem
using a mixture of computer vision and human intelligence.

Monocular 3D reconstruction is an ill-posed problem and is inherently am-
biguous: a single RGB image on its own does not provide depth cue explicitly
(i.e., given a single view image, there are infinite numbers of 3D scene structures
explaining this image). However only one explanation is, in fact, correct. In this
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paper, we present a novel method for the reconstruction of 3D ball/shuttle po-
sition in sports television using a new constraint, namely, confirming point.

2 Method

2.1 The 3D Line Constraint

A camera is a mapping between the 3D world and a 2D image. Camera mapping
is represented by a matrix P. According to the pinhole camera model, P is a
3× 4 projective matrix defined by
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where m11,m12, ...,m34 are the elements of matrix P, (X,Y, Z) is the position
in the 3D world and (u, v) is the position in the 2D image. Let m34 = 1 because
the equation (1) uses homogeneous coordinates system.

Given N (N >= 6) court-to-image point correspondences, the projective
matrix P is computed by solving the following linear equations
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(2)
Suppose P is known and a 2D image point (u, v) is given, a set of 3D points

maps to this image point. This set constitutes a ray or line in 3D space passing
through the camera center. Monocular 3D reconstruction is very difficult because
one 2D image point back projects to one ray, which is defined by two planes:

(um31 −m11)X + (um32 −m12)Y + (um33 −m13)Z + (um34 −m14) = 0
(vm31 −m21)X + (vm32 −m22)Y + (vm33 −m23)Z + (vm34 −m24) = 0

(3)

As shown in Fig. 1, the image point (u, v) back project to a 3D line L. It
should be emphasized that the aim of this paper is to find the 3D point (X, Y,
Z) on this 3D line.

To find the 3D point, it will be necessary to add constraints on the solution,
which at the beginning result from a physical model. A well-known physical con-
straint is gravity. Ohno et al. showed that the 3D flying ball trajectory can be
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Fig. 1. Image point and its corresponding 3D line

estimated by fitting a physical model of 3D ball movements in the world to the
observed 2D ball trajectory in the image [5]. Ribnick et al. proved the minimum
condition for the existence of a unique solution[6]. The basic assumption behind
these methods is that the ball motion is governed only by gravity. This assump-
tion suffers from the model-drifting problem. Shen et al. added a bounce point
constraint to fix this problem[8]. However, this constraint is NOT available in
badminton or volleyball game because the shuttle or ball does not hit the ground
plane until one player scores a point.

In this paper we will develop a new method that uses confirming point to
reconstruct 3D shuttle position in a badminton game when the racket hits the
shuttle.

2.2 Cylinder Constraint

As shown in Fig. 2, one image point back project to one ray. Suppose we have a
new camera ♯2, then two matching image points back project to two rays (L and
L’ in Fig. 2). The 3D point (X, Y, Z) can be reconstructed by intersecting these
two rays. This method is well-known as multi-view (or triangulation) method
and camera ♯2 introduces a new constraint on the solution, which indicates the
3D point (X, Y, Z) on line L. Hawkeye system is a typical example.

Fig. 2. Multi-view method
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In monocular 3D reconstruction, however, camera ♯2 is not available. In com-
puter vision literature, there are several other constraints, including camera mo-
tion[4], shading[9], structured lighting[7], motion blur[2], learned pattern[3], etc.
However these constraints cannot be directly used in sport games. We found that
contextual constraints are very useful in sport games. We give a simple example
of player’s positional cylinder constraint.

In a badminton game, a player hits a shuttlecock across the net using a
racket. The strike-point cannot be far away from the player’s body, which is
modeled by a cylinder at the player’s position (4.29, 1.41, 0) in Fig. 3. Humans
make rough inferences about the approximate 3D point using cylinder constraint.
Empirically, the radius of the cylinder is 1.84 m, and the height of the cylinder
is 3.2 m. In Fig. 3, the image point (595, 68) back projects to a 3D line. After
introduction of contextual constraint (player’s position here), the 3D line L is
reduced to a red colored line segment within the cylinder.

Fig. 3. Player’s positional constraint

2.3 Confirming Point

The cylinder constraint has two problems: (1) it provides approximate range not
accurate 3D position; (2) the player’s position is ambiguous when he plays a
vertical jump.

First, the more accurate 3D point can be inferred from 3D human pose when
the player hits the shuttle. In other words, the contextual constraint is the human
skeleton structure. Monocular 3D pose estimation has received much interest in
computer vision community due to the wide range of applications. It is a difficult
problem because there are large numbers of degrees of freedom (around 30) to
be recovered. Especially, there are many difficulties in real sports data (e.g.,
motion blur, self-occlusions, and self-similarity). Therefore, fully automatic 3D
pose estimation is currently not possible, and manual labeling is required [1].

The complete 3D skeleton requires a human operator to manually label all
joint locations in image. These labeling is a heavy work in badminton game
because the average length of a rally is more than 10 shots. Moreover, a full-
body 3D human pose is not necessary if we want only the 3D position of the
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Fig. 4. The 3D point can be inferred by 3D human pose

shuttle in sports television. In this paper, we use a confirming point rather than
all joint points. This confirming point can be easily labeled as follows.

Fig. 5. The 3D point is inferred from image point and confirming point

In Fig. 5, for example, the player hits the shuttle on his backhand side in
the midcourt. The operator clicks the shuttle position (588,293) in the image,
and the corresponding 3D line L is computed according to (3). The operator’s
mouse moves on the computer screen, and the confirming point is shown both
in the image (left) and in the 3D visualization window (right). The confirming
point (588,397) is decided by the operator according to the contextual cue: hu-
man pose, stroke technique, shadow on the ground, and shuttle trajectory. The
confirming point has two assistant crossing lines, and each line parallels to the
X or Y axis. Crossing line ♯2 intersects with the projected line LG of L on the
ground plane. The intersection point (4.06 9.34) indicates that the 3D point is
(4.06 9.34 1.51). In short, two 2D image points provide one 3D point.

Please note that the confirming point decision is made by human operator,
because contextual cues are too complicated to be captured by mathematical
model using current computer vision technology. For example, the player’s po-
sition is ambiguous when he plays a vertical jump smash. The fact is that the
shadow of the player indicates that he is jumping (left in Fig. 6), but the image
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itself gives the incorrect position (jump height is 0 m). However, the temporal
cues show that the correct position of player is not on the ground, and the ver-
tical jump height is 0.42 m (right in Fig. 6). Therefore, a human operator can
easily tell the correct confirming point, but computer can not.

Fig. 6. Example of a vertical jump

The confirming point plays a vital role in our monocular 3D reconstruction
system. It represents all of the contextual information perceived by humans,
and helps us to tell the 3D position from a single view. Hence, our method is a
mixture of computer vision and human intelligence.

2.4 Air-ball Friction Model

Given 3D position of ball/shuttle, complete 3D trajectory can be estimated using
Shen’s method [8]. But a main shortcoming of [6] [8] is that it doesn’t model the
air-ball friction. In this paper, we propose a novel air-ball friction model.

X(t) = X(0) + tVX − 1
2αVXt2

Y (t) = Y (0) + tVY − 1
2αVY t

2

Z(t) = Z(0) + tVZ − 1
2 (g + αVZ)t

2
(4)

where (X(t), Y (t), Z(t)) denote the position of the ball at time t, and (VX , VY , VZ)
denote the velocity of the ball at time 0, g denotes the acceleration of gravity
(g = 9.8 m/s2) and α is air-ball friction coefficient. The aerodynamic drag force
is a function of ball velocity (VX , VY , VZ) and air-ball friction coefficient (α).
This 3D ball trajectory model is very simple and effective.

First, we can directly estimate α from a monocular view data.

θ∗ = argmin
θ

(F ) (5)

where θ = (X(0), Y (0), Z(0), VX , VY , VZ , α) and F is a cost function[8]. But this
α estimation method is troublesome. Evidence shows that the monocular view
data itself cannot provide a correct result.

Moreover, we collected a Hawkeye ground truth dataset GT and GT (i) is ith

smash speed (i=1,2,...G) in badminton game from television. We estimate α by
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minimization:

α∗ = argmin
α

G∑
i=1

(
√

(V 2
X + V 2

Y + V 2
Z )−GT (i))2 (6)

We found that the best air-ball friction coefficient α∗ is 3.135 and the best
mixture weight w is 780 in [8]. Given these two parameters, our α fixed method
provides a reliable result. Please refer to section 3 for more details.

3 Experiment

Fig. 7. Our monocular 3D reconstruction system and the final strikes

We implement the proposed method using C++ and run it on a 3.3GHz PC
with 2G RAM. The videos are recorded from the Badminton - Singles Men of the
Rio 2016 Olympic Games. Using the monocular 3D reconstruction method in [8]
and two image points method in this paper, we obtain 1363 shuttle trajectories.
Some final strikes are visualized in Fig. 7.

Table 1. The Comparison of four methods.

Method Mean-Square Error (m/s) Back-project Error (pixels)

Ribnick 2009 [6] 2.27e+018 23.212
Shen 2015 [8] 5989.14 209.828
Our α estimation method 5989.08 206.85
Our α fixed method 1559.37 67.0942

Second, we collected a Hawkeye ground truth dataset from the original bad-
minton games in television broadcast, and compared four methods: Ribnick 2009
[6], Shen 2015 [8], our α estimation method and our α fixed method (α=3.135).
As shown in Table 1, Ribnick 2009 is the best according to the back-project error.
But it is the worst according to the MSE because it suffers from the model drift-
ing problem [8]. Our α fixed method is the best. The experiment result shows
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that the aerodynamic drag force (α) influences the monocular 3D reconstruction
significantly and cannot be ignored.

4 Conclusion

The proposed method uses two constraints to solve the monocular 3D recon-
struction problem. The first constraint is the ball/shuttle image point recover-
ing a 3D line from camera to ball. The second constraint is the confirming point
telling us where the 3D point is on this line. The confirming point represents all
the contextual cues, such as human pose, stroke technique, and shadow on the
ground. The confirming point decision is made by a human operator. Therefore,
the proposed method is a mixture of computer vision and human intelligence.

The proposed method models air-ball friction to improve monocular 3D re-
construction. The aerodynamic drag force influences monocular 3D reconstruc-
tion significantly and cannot be ignored. The air-ball friction coefficient α is
3.135 in badminton game.
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