Levenberg-Marquardt快速入门教程(荐)

减小字体 增大字体作者:沈乐君  来源:本站原创  发布时间:2009-05-29 10:50:15

本文附的源程序是MATLAB代码,总共不到80行,实现了 求雅克比矩阵的解析解,演示了Levenberg-Marquardt最优化迭代过程,演示了如何求解拟合问题。本文用图文介绍了LM算法。转帖请注明来自蜜蜂电脑,谢谢!(2009-9-23更新C++代码点击进入

什么是最优化,可分为几大类?
答:Levenberg-Marquardt算法是最优化算法中的一种。最优化是寻找使得函数值最小的参数向量。它的应用领域非常广泛,如:经济学、管理优化、网络分析 、最优设计、机械或电子设计等等。
根据求导数的方法,可分为2大类。第一类,若f具有解析函数形式,知道x后求导数速度快。第二类,使用数值差分来求导数。根据使用模型不同,分为非约束最优化、约束最优化、最小二乘最优化。

什么是Levenberg-Marquardt算法?
它是使用最广泛的非线性最小二乘算法,中文为列文伯格-马夸尔特法。它是利用梯度求最大(小)值的算法,形象的说,属于“爬山”法的一种。它同时具有梯度法和牛顿法的优点。当λ很小时,步长等于牛顿法步长,当λ很大时,步长约等于梯度下降法的步长。在作者的科研项目中曾经使用过多次。图1显示了算法从起点,根据函数梯度信息,不断爬升直到最高点(最大值)的迭代过程。共进行了12步。(备注:图1中绿色线条为迭代过程,但是由于分辨率小,看得不太清楚,单击该图后可放大查看)。

Levenberg-Marquardt教程


图1 LM算法迭代过程形象描述

图1中,算法从山脚开始不断迭代。可以看到,它的寻优速度是比较快的,在山腰部分直接利用梯度大幅度提升(参见后文例子程序中lamda较小时),快到山顶时经过几次尝试(lamda较大时),最后达到顶峰(最大值点),算法终止。

如何快速学习LM算法?

学习该算法的主要困难是入门难。 要么国内中文教材太艰涩难懂,要么太抽象例子太少。目前,我看到的最好的英文入门教程是K. Madsen等人的《Methods for non-linear least squares problems》本来想把原文翻译一下,贴到这里。请让我偷个懒吧。能找到这里的读者,应该都是E文好手,我翻译得不清不楚,反而事倍功半了。
该文链接:http://www2.imm.dtu.dk/pubdb/public/publications.php? year=&pubtype=7&pubsubtype=§ion=1&cmd=full_view&lastndays=&order=author。或者直接下载pdf原文:http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf


例子程序(MATLAB源程序)
本程序不到100行,实现了 求雅克比矩阵的解析解,Levenberg-Marquardt最优化迭代,演示了如何求解拟合问题。采用萧树铁主编的《数学试验》(第二版)(高等教育出版社)中p190例2(血药浓度)来演示。在MATLAB中可直接运行得到最优解。

% 计算函数f的雅克比矩阵,是解析式
syms a b y x real;
f=a*exp(-b*x);
Jsym=jacobian(f,[a b])


% 拟合用数据。参见《数学试验》,p190,例2
data_1=[0.25 0.5 1 1.5 2 3 4 6 8];
obs_1=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01];

% 2. LM算法
% 初始猜测s
a0=10; b0=0.5;
y_init = a0*exp(-b0*data_1);
% 数据个数
Ndata=length(obs_1);
% 参数维数
Nparams=2;
% 迭代最大次数
n_iters=50;
% LM算法的阻尼系数初值
lamda=0.01;

% step1: 变量赋值
updateJ=1;
a_est=a0;
b_est=b0;

% step2: 迭代
for it=1:n_iters
    if updateJ==1
        % 根据当前估计值,计算雅克比矩阵
        J=zeros(Ndata,Nparams);
        for i=1:length(data_1)
            J(i,:)=[exp(-b_est*data_1(i)) -a_est*data_1(i)*exp(-b_est*data_1(i))];
        end
        % 根据当前参数,得到函数值
        y_est = a_est*exp(-b_est*data_1);
        % 计算误差
        d=obs_1-y_est;
        % 计算(拟)海塞矩阵
        H=J'*J;
        % 若是第一次迭代,计算误差
        if it==1
            e=dot(d,d);
        end
    end

    % 根据阻尼系数lamda混合得到H矩阵
    H_lm=H+(lamda*eye(Nparams,Nparams));
    % 计算步长dp,并根据步长计算新的可能的\参数估计值
    dp=inv(H_lm)*(J'*d(:));
    g = J'*d(:);
    a_lm=a_est+dp(1);
    b_lm=b_est+dp(2);
    % 计算新的可能估计值对应的y和计算残差e
    y_est_lm = a_lm*exp(-b_lm*data_1);
    d_lm=obs_1-y_est_lm;
    e_lm=dot(d_lm,d_lm);
    % 根据误差,决定如何更新参数和阻尼系数
    if e_lm<e
        lamda=lamda/10;
        a_est=a_lm;
        b_est=b_lm;
        e=e_lm;
        disp(e);
        updateJ=1;
    else
        updateJ=0;
        lamda=lamda*10;
    end
end
%显示优化的结果
a_est
b_est

全文下载 点击此处下载(WORD文档,大小190KB)

本程序对应的C++实现,已经公开。

演示程序求解的问题是《数学试验》(萧树铁,第二版,高等教育出版社)中p190例2。为了方便读者,提供该书籍的数据和目标函数照片(2012年4月1日)。

Levenberg-Marquardt,LM教程,Levenberg Marquardt教程,最优化,非线性最小二乘法,无约束最优化,Levenberg Marquardt源代码

  • 好的评价 如果您觉得此文章好,就请您
      100%(47)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)
   评论摘要(共 5 条,得分 485 分,平均 97 分) 查看完整评论
[回复] 5网友   打分:85 分  发表时间:2017-11-24
· Nice. 

A question though: You have a 1D function,
[回复] 4xindh_nju   打分:100 分  发表时间:2014-12-25
· thank you very much!
但是我觉得根据Marquardt的改进应该是把表达式
H_lm=H+(lamda*eye(Nparams,N
[回复] 3扣肉   打分:100 分  发表时间:2014-07-01
· 这种奉献精神真的值得推广和学习。
[回复] 2网友求个鸟   打分:100 分  发表时间:2014-04-05
· 挺好,就是没有C++代码
[回复] 1网友   打分:100 分  发表时间:2014-03-25
· 好帖!值得支持,传递知识是一种美德。

用户名:   验证码:

分 值:100分 85分 70分 55分 40分 25分 10分 1分

内 容:

      若文章有错误,请将右边打钩通知管理员

关于本站 - 友情连接 - 网站地图 - 我要留言